Garibaldi School Year 8 Overview Schemes of Learning 2023-2024 teaching

The Year 8 Scheme of Learning flows seamlessly from Year 7 to ensure that our students continue to build upon their Mathematical fluency, reasoning and problem solving skills.

The maths team have ensured that the order of learning is progressive and logical, and continues to develop fluency, through reasoning and problem solving. In addition, we aim to increase our students love and enthusiasm for maths and improve their understanding for Cultural Capital through an appreciation of everyday uses and application of mathematical concepts.

Our teachers will build on prior learning, by interleaving content, in order to help students consolidate topics and aid retention.

In Year 8, we continue to deliver our ambitious curriculum, with the 'Bowland' problem solving lessons, which continue to improve our students problem solving skills, in addition to developing their oracy, and their confidence in presenting to their peers. Through the delivery of 'Real-world maths' lessons, our students gain a deeper understanding of the maths all around them, setting them up well for life after education.

Year 8 Scheme of Learning 2023/24

Term 1

Year 8 Autumn Term 1
GARIBALDI
SCHOOL

	Solving Linear Equations and Inequalities
	Arithmetic sequences
Change the subject	Solve equations and inequalities with an unknown on one or both sides and brackets. Ensure that the highest value unknown appears on either side of the equation.
Nth Term (linear)	Carry on a sequence and identify the term to term rule. Continue pictorial sequences. INCLUDE FRACTIONAL, DECIMAL, NEGATIVE AND ALGEBRAIC SEQUENCES.
Draw Linear Equations	Guide learners to generalise a rule for the nth term of both positive and negative sequences. Use the nth term to find terms and justify if a number is in the sequence.
Geometric \& Fibonacci Sequences	Draw linear equations focussing mainly on the link to sequences and substitution.
	Nth Term (quadratic)
	Understand and identify different types of sequences. Find missing values in geometric and Fibonacci sequences.
	Find the nth term of a quadratic sequence and use them to generate and justify terms.

©				
	4. Angle Reasoning		5. 2D Shape Application	
	Scale Drawings	Draw and measure line segments and angles in geometric figure, including interpreting scale drawings. Use proportionality and unit conversions.	Area \& Perimeter including Compound Area	Calculate area and perimeter of compound shapes including rectangles, triangles and parallelograms. INCLUDE ALGEBRA.
	Bearings	Measure and draw bearings. Know the three 'rules' of bearings.	Area of Trapezium	Calculate the area of trapeziums using numerous methods. Find missing lengths when given then area. Include two compound shapes.
-	Angles on Parallel Lines	Recognise parallel lines and calculate missing angles.	Converting between Areas	Understand the relationship between conversions of length and its impact on area.
\square	Interior/Exterior Angles in Polygons	Calculate Interior and Exterior angles in any polygon. Extend to include angle problems with compound shapes and algebra.	Circumference of Circles	Understand what PI is and how it is calculated. Use this to understand and generalise the rule to calculate circumference.
\square			Area of Circles	Understand and generalise the rule for calculating the area of circles.
	Return Bearings	Calculate return bearings and more complex problems through use of parallel line rules.	Arcs \& Sectors	Calculate the perimeter of arcs and sectors. Using common fractions of a whole circle such as half, quarter and three quarters only.
			Area and Perimeter of Arcs and Sectors	Calculate the perimeter and area of arcs and sectors. These being any angle given. Calculate angles when given the perimeter and area.

Bowland lesson (wk 3 and 6)	Bunting and Sports Bag
Real-world maths lesson (wk 2, 4 \& 5)	Debt, Tessellation, Plan a Christmas Party

Year 8 Autumn Term 2

GARIBALDI
SCHOOL

Bowland lesson (wk 3 and 5)	Day Out and Problem Page
Real-world maths lesson (wk 2 and 4)	Plan a Trip and Mobile phone Deals

Term 4
Ratio and Proportion
8. Ratio - manipulations

Simplifying Ratios and representing Fractions	As both A as a fraction of the whole. A as a fraction of B. Substituting parts of the ratio into algebraic expressions.
Dividing into a ratio	Divide into a given ratio using a variety of methods, including bar modelling.
Given part of a ratio find the whole or other parts	Solve problems involving one part or more/less than type questions. Use a variety of methods.
Three way Ratio	Find equivalent parts of corresponding ratios in order to solve problems.
Changing Ratios	Find parts and wholes of ratios when the ratios and parts have changed from the original.

9. Compound Units

SDT	Use the SDT triangle to carry out simple calculations.
Distance Time Graphs	Complete distance time graphs and be able to carry out average speed for one/two/the whole of the journey.
DMV	Lead students to generalise the rule to calculate DMV. Solve problems involving substitution into the formula, including calculating volume of shapes.
STD Conversion between Units	Calculate SDT and convert between units of time and distance.
Velocity Time Graphs	Complete velocity time graphs and be able to calculate each from the given graph or information

10. Direct and Inverse Proportion

10. Direct and Inverse Proportion	
Recipes	Use proportionality to scale ingredients for required amounts. Use unitary and multiplicative reasoning methods.
Direct proportion (non- algebraic)	Calculate missing values using direct proportion, including pie chart calculations.
Best Buy Problems	Calculate unit costs and scaling methods in order to compare the best value for money.
Conversion Graphs	Use conversion graphs to calculate a variety of conversions.
Exchange Rates	Use given exchange rates of any currency to convert given amounts. Include situations that require more than one conversion.
Similar Shapes with lengths	Calculate similar lengths of shapes both larger and smaller. Understand that the angle is not affected.
Direct and Inverse Proportion (Algebraic)	Understand direct and inverse proportion notation and satisfy given situations in order to find the constant and missing values.
Similar Shapes Area and	Calculate Similar area and volumes.
Volume	

Bowland lesson (wk 3 and 6)

Smoothies and Candle Box

Real-world maths lesson (wk 2, 4 \& 5)

Exercise, BMI, Food \& Nutrition

	Statistics
	11. Working with Data
Listing Outcomes	List all possible outcomes for events and combinations. Develop students logical listing strategies to avoid omissions.
Choosing an appropriate average	Calculate all averages and range from lists of data. Make comparisons of data sets and justify why a particular average is most appropriate.
Averages and Range from Grouped and Non- Grouped Data	Calculate all averages and range from a table. Students must understand how to tabulate data into grouped and ungrouped before calculating.
Scatter Graphs	Draw and interpret scatter graphs. State types of correlation and describe relationships. Draw and use the line of best fit to make predictions and identify outliers. Understand interpolation and extrapolation.
Frequency Polygons \& Equal width Histograms	Draw and in interpret frequency polygons and equal width histograms for continuous data.
Product Rule for Counting	Understand the product rule for counting in order to find the total of more complex amounts of combinations.
Cumulative Frequency	Draw and interpret cumulative frequency graphs. Find the min, max, median, LQ, UP and IQR. Draw box and whisker diagrams
Histogram	Draw and interpret Histograms with unequal widths.

Graphs
12. Pythagoras \& Trigonometry

Pythagoras	Be able to determine if Pythagoras can be used. Find any missing length of a right angled triangle given the other two lengths. Extend to functional style questions.
Trigonometry Lengths (basic)	Accurately label a right angled triangle with H, A and O Develop a method of using trigonometry SOH CAH TOA to identify and evaluate the correct trigonometric ratio. Rearrange and apply the trigonometric ratio to find the given length.
Trigonometry Angles (basic)	Accurately label a right angled triangle with H, A and O Develop a method of using trigonometry SOH CAH TOA to identify and evaluate the correct trigonometric ratio. Rearrange and apply the trigonometric ratio to find the given angle.

Bowland lesson (wk 3 and 6)
Real-world maths lesson (wk 2, 4 \& 5)

The 'Z' Factor and Spinner Bingo Time Management, Cost \& Profit, Garden Design

SCHOOL

Graphs of cubic functions	Draw cubic graphs and identify key characteristics of this.
Graphs of other functions	Recognise/draw graphs of exponential and reciprocal functions.
Parallel lines	Find the equation of parallel lines given the gradient and one coordinate. Find the equation of the line given two coordinates.
Perpendicular Lines	Find the equations of perpendicular lines.

Term 6

Bowland lesson (wk 3 and 6)	Three of a Kind and Cats and Kittens
Real-world maths lesson (wk 2 and 4)	First Job and Planning Summer Holiday

Year 8 Summer Term 2
SCHOOL

Term 6

Transformations

16. Use of Transformations

Translation	Understand vector notation for movement. Be able to move a given shape using vector translations. Understand that to describe a translation we must use a vector. No invariance.
Reflection	Reflection across a given line (horizontal and vertical). Reflection given an equation of a line. Reflection across a diagonal mirror line. Understand that for a reflection you must be given a mirror line (or the equation of a line to reflect over).
Rotation	Rotations of a shape anywhere on a diagram. Understand rotations clockwise/anticlockwise and by 900, 180 o and 270o. Understand that to be able to rotate a shape we need to know, how many degrees, clockwise/ anticlockwise and from where. Be able to rotate a shape given a point of rotation.
Enlargement	Understand that an enlargement can mean getting bigger or smaller. Enlarge shapes given a positive scale factor. Enlarge shapes given a fractional scale factor.Link the scale factor to where it is being mapped. Enlarge given a centre of enlargement. Understand information needed to enlarge: Scale factor, centre of enlargement. Link vector movement.
Describing Transformations	Be able to identify and describe all transformations. Important that if it states single transformation, that students know as soon as they mix one they score zero. Look at variance and comparing transformations using invariant points.
Vector Resultants	Simple vector resultants. Adding or subtracting any given vectors. Multiplying or dividing any given vectors. Writing a resultant to two or more vector movements. EXAMPLE : Given A and B; Find $2 A+3 B$ Draw simple vector resultants. Find a vector resultant given a geometric representation.

Bowland lesson (wk 3 and 6)
Three of a Kind and Cats and Kittens
Real-world maths lesson (wk 2 and 4)
First Job and Planning Summer Holiday

